Stencil printing of adhesive-based fuel cell sealings The influence of rheology on bubble formation during the separation step

F.I. Indicatti^{1,2}, M. Rädler¹, F. Günter¹, E. Stammen², K. Dilger² ¹Robert Bosch GmbH, Germany | ²Technische Universität Braunschweig, Germany fabiano.indicatti@de.bosch.com | +49 162 3326374

Background

Stencil printing is one of the highest throughput techniques for applying adhesives and presents high potential to produce fuel cell sealings in a large scale

Print requirements¹:

Results

Bubble formation:

Filament stretching as a dominant mechanism on bubble formation

- High process reproducibility
- Layer heights up to 500 µm
- Cycle times <3 sec

Main challenges:

- A mesh on the upper region of the aperture is required to print sealings
- As result, bubbles and irregularities are formed and can affect the print quality and sealing performance

Bubble quantity and size correlated with filament stretching behavior:

Bubble quantity and $\varepsilon_{He,mat}$:

- High <u>positive</u> correlation due to the strong decrease of δ with increasing filler content
- Shift towards a more elastic behavior beneficial to reduce

Objectives

- Enhance the understanding on mechanisms driving the adhesive separation from the stencil mesh
- Correlate the <u>quantity and size of bubbles</u> formed during the separation step on stencil printing with the adhesive tendency to stretch filaments

Materials and Methods

- Print experiments varying decisive parameters:
 - Separation speed v (1 and 5 mm/s)
 - Mesh opening size (300 and 400 μ m)
 - Three adhesive systems (A, B and C) with distinct concentrations of fumed silica (<10 wt%)
- Filament stretching behavior assessed with $\varepsilon_{He,mat}$: Compare materials stretched at identical separation speeds and initial dimensions²

$$\varepsilon_{He,mat} = n \sin(\delta) \ln(Ca)$$

* Indicates the percentage of mesh openings that formed bubbles ** Normalized by mesh opening size for better comparison between distinct meshes filament breaking length and thus interactions that produce bubbles

Bubble size (Ø) and $\varepsilon_{He,mat}$:

- High <u>negative</u> correlation due to the adverse impact of a stronger elastic behavior on the reduction of the adhesive surface area
- Yet, high <u>positive</u> correlation between bubble size and $\ln(Ca)$. Lower viscosities due to smaller filler contents result in a larger impact of surface tension effects on minimizing the bubble size

 σ separation speed v and surface tension σ

Adhesive system	n [–]	δ [°]	η [Pa⋅s]	σ [<i>m</i> N/m]*
Α	0,722	32,6	178	23,5
В	0,714	23,5	252	23,5
С	0,690	14,4	435	23,5

* σ measured with the unfilled adhesive

Conclusions

 \bullet $\varepsilon_{He,mat}$ applicable to optimize rheological properties for the separation process • Minimize $\varepsilon_{He,mat}$ and Ca to reduce bubble quantity and size

References

[1] A. Kampker, P. Ayvaz, C. Schön, P. Reims and G. Krieger, 'Production of fuel cell components', 1st Ed., PEM of RWTH Aachen University and VDMA (2020) [2] F. J. Fassbender, H. Fricke, B. Mayer and T. Vallée, 'Filament breaking length - Experimental and numerical investigations', Int J Adhes Adhes, 87, p. 47-63 (2018)

Institut für Füge- und Schweißtechnik

CR/AIL1 2022 | © Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.